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Abstract 
Pushing accelerator magnets beyond 10 T holds a 

promise of future upgrades to machines like the Tevatron 
at Fermilab and the LHC at CERN. Exceeding the current 
density limits of NbTi superconductor, Nb3Sn is at present 
the only practical superconductor capable of generating 
fields beyond 10 T. Several Nb3Sn pilot magnets, with 
fields as high as 16 T, have been built and tested, paving 
the way for future attempts at fields approaching 20 T. 
High current density conductor is required to generate 
high fields with reduced conductor volume. However this 
significantly increases the Lorentz force and stress. Future 
designs of coils and structures will require managing 
stresses of several 100’s of MPa and forces of 10’s of 
MN/m. The combined engineering requirements on size 
and cost of accelerator magnets will involve magnet 
technology that diverges from the one currently used with 
NbTi conductor. In this paper we shall address how far 
the engineering of high field magnets can be pushed, and 
what are the issues and limitations before such magnets 
can be used in particle accelerators.  

INTRODUCTION 
The Tevatron, the first accelerator to use  

superconducting magnets in its main ring, was made from 
NbTi conductor with a current density of 1800 A/mm2 at 
5 T and 4.2 K [1]. The bore diameter was 76 mm, the 
two-layer coil was 16.2 mm thick, and it could reach its 
short-sample field of 4.8 T at 4.3 K, with a stored energy 
of 98 kJ/m (“short-sample” is defined as the current vs 
field limit in a short superconducting wire at a given 
temperature). If one were to replace the Tevatron cable 
with identical size Nb3Sn superconducting strands, that 
same magnet could reach 11.9 T at 4.3 K. The stored 
energy would rise to 674 kJ/m, and the original 57 MPa of 
coil stress, produced by the accumulation of Lorentz 
forces (Lorentz stress), would increase to an unacceptable 
level of 294 MPa (we assume a Nb3Sn wire capable of 
carrying 3000 A/mm2 in the superconductor at 12 T, 4.2 
K).  

When the LHC pushed NbTi conductor closer to its 
high-field limit, the 56 mm bore dipoles reach 9.7 T at 1.9 
K, and a stored energy of 334 kJ/m (per bore) [2]. 
Replacing the cable in that magnet with identical size 
Nb3Sn conductor (31.3 mm of overall coil thickness) 
would raise the field to 15.2 T, the stored energy to 900 
kJ/m, and the Lorentz stress from 88 MPa to 220 MPa. 

This comparison between NbTi and Nb3Sn conductors 
points out both the promise and the challenge for high 

field magnets. Accelerator magnets, by the shear fact that 
a large number of them will be needed for any accelerator, 
can not be treated as a “one-of-a-kind” magnet. Their cost 
must be at a minimum and their reliability high. To 
accomplish that, the engineering of Nb3Sn magnets will 
have to exceed all previous superconducting magnet 
technology. Pushing the limits on high field Nb3Sn 
magnets in a way suitable for particle accelerators 
requires the best superconductor, a reasonably small size 
magnet, and a compact structure. The coil must be 
protected against a ten-fold increase in stored energy, and, 
last but not least, the conductor change in strain must be 
kept at a minimum. How we meet the challenge and how 
far we can push such magnets is the focus of this paper. 
We shall address the relations between field, coil size, 
bore diameter, stress, stored energy, and point out areas 
where we presently meet the challenge and areas that will 
require further R&D. 

 BRIEF Nb3Sn MAGNET HISTORY 
Nb3Sn dipole magnets have a relatively short history. In 

comparison to the thousands of NbTi magnets built in the 
past 40 years only several dozens have been built with 
Nb3Sn conductor. Among them seven record-breaking 
dipoles (Fig. 1) have pushed the magnetic field from 4.8 T 
in 1978 (BNL dipole magnet [3]) to 16 T in 2003 (LBNL 
HD1 [4]). Other record-breaking magnets included LBNL 
D10 (1984 [5]), CERN-ELIN dipole magnet (1989 [6]), 
University of Twente MSUT (1995 [7]), LBNL D20 
(1997 [8]), and LBNL RD3b (2001 [9]).  At the present, 
R&D on Nb3Sn magnets is being conducted at BNL [10], 
FNAL [11], LBNL [12], Texas A&M University [13], 
CEA Saclay [14], and the University of Twente [15]. 

 
Figure 1: World record-breaking Nb3Sn dipole magnets. 
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Figure 2: Improvement in Nb3Sn current density. 

The increase in field went hand in hand with 
progressively higher current carrying capacity of the 
Nb3Sn conductor (Fig. 2). The current density of Nb3Sn 
has increased almost ten fold from the early 80’s to the 
present time [16]. 

DIPOLE MODEL 

Model Description 
To study the limits of superconducting dipole magnets, 

we formulated a simple but realistic model based on 
several assumptions: 1) the bore is round and the coil is a 
thick cylinder (Fig 3); 2) the engineering current density 
is equal to Jecosθ  and the field is therefore a pure dipole; 
3) the field magnitude in the bore and along the conductor 
inner surface is identical; 4) the short-sample current 
density in the superconductor Jss and the engineering 
current density Je-ss (obtained by averaging Jss over 
copper, insulation, and voids) are a function of field B and 
temperature T; 5) the coil is not graded; 6) there is no 
ferromagnetic material nearby. 

A simple relation exists between the central dipole field 
B0, the engineering current density Je, and the coil 
thickness w [17]: 
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If we extend the engineering current density Je up to the 
short-sample current density limit Je-ss, the field will reach 
its corresponding short-sample value Bss. By applying 
Summer’s empirical short-sample relation [18] to the 
above equation, we obtain  
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where the coil thickness is expressed as a function of 
short-sample field and temperature only. We note and 

emphasize that the relation is independent of bore 
diameter. 

We conducted our parametric analysis assuming the 
best commercially available superconductor (Nb3Sn with 
3000 A/mm2 at 12 T and 4.2 K) and a Rutherford cable 
with 50 % non-copper, a 12 % void fraction and an 11 % 
insulation fraction (Fig. 4). 

 
Figure 3: A pure dipole with a Jecosθ  current density. 

 
Figure 4: Short-sample current density Jss and the 
corresponding engineering value Je-ss of Nb3Sn 
superconductor.  

PARAMETRIC DEPENDENCIES 

Coil Thickness 
The coil thickness wss at short-sample is plotted in Fig. 

5 for two different operating temperatures. We note that, 
at 1.9 K, a 7 mm thick coil is sufficient to generate a 10 T 
field, and a 100 mm thick coil will be needed for a 19 T 
field. Operating at 1.9 K requires significantly less 
conductor than at 4.2 K, an advantage that becomes even 
more significant as the field approaches 20 T. 

It is worth noting that, for the same current density and 
coil thickness w, a solenoid will generate a field that is 
twice that of a dipole (B0 = µ0Jew). Solenoids are 
therefore inherently more compact, use less conductor and 
have already achieved fields in excess of 20 T [21]. We 
therefore expect high field solenoids to represent an upper 
boundary for high field dipoles. 



 
Figure 5: Coil thickness of Nb3Sn dipole magnets at short-
sample (T = 4.2 K and 1.9 K). 

Bore Diameter 
Since the field depends on the coil thickness and not on 

the bore diameter, we may claim that a dipole with a zero 
bore diameter has the same field as a coil with any bore 
diameter, as long as the coil thickness is constant. This 
gives us the opportunity to separate the cost of the field 
from the cost of the bore. 

The cost of the coil is proportional to its area, which is 
given by πw2 + 2πwR1 (where w is the coil thickness, and 
R1 is the bore radius). We associate the first term with the 
area of a no bore coil, and the second term with an 
additional area representing the contribution of a bore. 
Accordingly, the cost of the field is proportional to w2, but 
the additional cost of the bore is linearly proportional to 
the bore diameter. 

 
Figure 6: Coil thickness and bore diameter of various high 
field dipoles at short-sample (T = 1.9 K). 

 
This dependence of the coil area (i.e. cost) on field and 

bore diameter is shown in Fig. 6, where we compare three 
different bore diameters at three different field levels. For 
each field the coil thickness remains the same. The 
proportionality between the various coil geometries has 

been maintained to illustrate the relative increase in coil 
area with increasing bore diameter. We notice that the coil 
area with zero bore increases by a factor of 10 as the field 
increases from 14 T to 18 T. In comparison, at high fields 
(for example at 18 T), where the current density drops 
(see Fig. 4), doubling the bore diameter from 25 mm to 50 
mm increases the amount of conductor by only 26 %. We 
conclude that at very high fields, where the coil thickness 
approaches 100 mm, the effect of the bore diameter on the 
overall cost of the conductor is minor (the impact of coil 
grading will be addressed in the following section). 

Lorentz Stress 
The azimuthal Lorentz stress in a 2D cosθ dipole is the 

integrated azimuthal Lorentz force with respect to θ (no 
shear) [20]. Expressed as 
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the stress exhibits a maximum along the coil mid-plane   
(θ = 0), at a radius nearly two thirds of the coil thickness  
r = Rmax ~ 2/3 w. The above expression of stress can be 
rewritten as a function of field and coil thickness w, 
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where Rmax is calculated by setting ∂σθ/∂r = 0 and solving 
the cubic relation in r. 

If we apply the short-sample field, coil thickness wss, 
and a given bore diameter to the above equation, we 
arrive at the maximum short-sample stress σθ-max-ss (Fig. 
7). 

 
Figure 7: Maximum azimuthal Lorentz stress at short-
sample (T = 1.9 K). 

The zero bore solution is a monotonic increasing 
function of the field and is at the minimum for any bore 
diameter at that field. Surprisingly, for certain bore 
diameters and field ranges, the maximum stress decreases 
as the short-sample field increases. That can be explained 
as follows: as the field increases, so do coil thickness wss 
and Lorentz force; however, it is possible that the rate of 



increased coil thickness is greater than the corresponding 
Lorentz force, thereby reducing the stress.  

We also note that at low fields (~ 10 T) the conductor is 
very efficient and very thin, resulting in high stress. At 
high fields the coil thickness dominates and the stress 
asymptotically approaches that for a zero bore solution, 
equal to σθ-max-ss = (3Bss

2)/(8µ0). 

Stored Energy 
The stored energy E of a dipole increases quadratically 

with field B, bore radius R1, and coil thickness w: 
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Figure 8 is a log plot of the short-sample stored energy 
Ess for a number of different bore diameters, including a 
zero bore. 

 
Figure 8: Short-sample stored energy in dipoles at T = 1.9 
K for various bore diameters. 

As for the stress, we can associate the energy of a zero 
bore diameter with the term outside the square brackets in 
the formula above, and the terms within the bracket as an 
additional bore contribution. At high fields (above 18 T) 
the major contributors to the stored energy are the field B 
and coil thickness w. The contribution by the bore is only 
a ratio between the radius R1 and coil thickness w. In fact, 
when the coil thickness w increases, the additional 
contribution of bore diameter to the stored energy 
becomes less effective and the stored energy 
asymptotically approaches that of a zero bore.  

If we focus on the curves representing a bore diameter 
closer to the LHC dipole (50-60 mm), we notice that at 15 
T the stored energy is close to 1 MJ/m (a three-fold 
increase with respect to the actual 10 T NbTi dipole), 
reaching 7 MJ/m at 20 T. 

GRADED COILS 
Grading the coil can effectively reduce overall size 

while the field remains the same. Grading takes advantage 
of the drop in field within the coil in order to raise the 
current density in several discrete outer layers, thus 

matching that drop. That way the superconductor can 
reach its short-sample simultaneously throughout the 
cross-section, thereby reducing the overall size.  

Grading significantly impacts the coil thickness at high 
field: for example, above 18 T, grading reduces the coil 
thickness by about 25 % (Fig. 9).  

 
Figure 9: Variation in coil thickness between graded and 
un-graded coils at short-sample (T = 1.9 K). 

It must be pointed out that grading reduces the coil 
thickness at the expense of an increase in conductor 
stress. An 18 T (at 1.9 K) dipole will reduce its coil 
thickness from 72 mm to 50 mm with grading (Fig. 9), 
but, in a 56 mm bore diameter coil, the maximum stress 
will rise from 170 MPa to an unacceptable level of 400 
MPa (Fig. 10). Since reducing the coil thickness has a 
major impact on reducing the magnet cost, we are left 
with an important R&D issue on how to bring down the 
stresses. Reducing the stress through stress management 
and the possible introduction of various force intercepts 
(as proposed in [21]) will have to be weighed against the 
reduction in the overall engineering current density, 
which, as a consequence, forces an increase in coil 
thickness once again. 

 
Figure 10: Grading an 18 T (T = 1.9 K) dipole with 56 
mm bore diameter reduces the coil thickness but raises the 
stress. 



DISCUSSION AND CONCLUSIONS 
The engineering challenge of trying to balance high 

fields against magnet size, stress, and stored energy can 
actually be met today for “one-of-a-kind” dipole. The cost 
however, hardly acceptable even for “one-of-a-kind” 
magnet, is unacceptable for a main ring accelerator. 
Solving the engineering challenge and keeping the cost 
down will require new designs where each magnet 
component is pushed to its limits.  

In order to address the issues related to accelerator 
magnets operating at the limit of Nb3Sn superconductor, 
we have used a simple analytical model. The analytical 
model, whose validity was checked against Finite 
Element Models (FEM) of several real magnet geometries 
(see Table I), was applied to dipoles in the range of 10 – 
20 T. 

 

Table 1: Comparison between FEM and analytical model. 

 Tevatron  
dipole 

LHC 
Dipole 

D20 

 FEM Anal. FEM Anal. FEM Anal. 
winput (mm) 16.2 16.2 31.3 31.3 54.9 54.9 
B0-ss (T) 4.8 4.7 9.7 9.8 13.5 12.9 
σσσσθθθθ-max (MPa) 57 46 88 103 150 160 
E (kJ/m) 98 106 334 384 1344 1100 

 
The following conclusions, regarding minimum coil 

size, coil stress, and magnet stored energy, can be drawn: 
 

• Pushing dipole fields to 20 T would require a coil that 
is 150 mm thick. With a 50 mm bore, the Lorentz stress 
would be 160 MPa and the stored energy 6.9 MJ/m. 
This should be considered as an upper limit for Nb3Sn 
dipole magnets.  

• Decreasing the field to 18 T would require a coil that is 
72 mm thick.  With a 50 mm bore, the Lorentz stress 
would be 170 MPa and stored energy 2.2 MJ/m. 

• Today's practical limit for an accelerator dipole is 
around 16 T (ws s= 38 mm, σθ-max = 190 MPa, E = 1 
MJ/m). 

• At very high fields, the effect of the bore diameter on 
the overall amount of conductor, the peak stress, and 
the stored energy is minor. 

• In a recent test of the 1 m long dipole magnet HD1, it 
was shown that a Nb3Sn coil can sustain high 
compressive stress in the range of 150-180 MPa and 
reach 16 T.  

• This level of stress can be considered at the present as 
an indicative practical limit for Nb3Sn coils. 

• By grading the coil, we can reduce coil thickness at the 
expanse of higher stress. As we are currently at the 
coils stress limit, new designs will have to be developed 
that intercept the Lorentz forces. However we need to 
be aware that stress management reduces not just the 
stress, but the coil efficiency as well. 

• Quench protection systems will be needed to handle an 
order of magnitude increase in stored energy. 
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